Sjoert van Velzen (NYU, UMD) Quasars in Crisis, Edinburgh August 6, 2019

Multi-wavelength observations of stellar tidal disruption flares

いないの日

Stellar tidal disruptions

- •Star passes within Roche radius (r_T)
- Half of the debris remains bound
- Steep fallback rate: t-5/3
- Rare events: ~10⁴ yr wait time per galaxy
- Above ~10⁸ M_☉, Roche radius inside black hole horizon

Rees (1988)

Big Questions

Do all galaxies host massive black holes in their nuclei?

Is accretion/jet physics scale invariant?

credit: Wikimedia

Pertinent Questions

Can we use TDEs to learn about BH accretion? "Solve the crisis"

How do we know TDEs are not CL AGN?!

TDE locus in optical surveys (2011)

adapted from van Velzen et al. (2011)

TDE locus in optical surveys (2019)

adapted from van Velzen et al. (2011)

Early-time light curves: steep decay

van Velzen et al. (2019)

Late-time light curves: an accretion disk emerges

- HST and Swift UV follow-up
- UV detections; light curve flattens
- Accretion disk required (high α)

(van Velzen et al. 2019)

*data from: Gezari et al. (2012, 2015) Holoien et al. (2014) van Velzen et al. (2019)

Disruption rate as a function of black hole mass

Based on method in van Velzen (2018); data from Wevers t al. (2017, 2019)

CL AGN should not look like this

Measuring the average spin of quiescent black holes

ASASSN-15lh: Leloudas et al. (2016) Figure: Stone & van Velzen (2019, in prep)

12

Spectrum of a tidal disruption flare

Spectrum of a tidal disruption flare

Spectrum of a tidal disruption flare

Multi-wavelength tour: radio emission

Radio data: Velzen et al. (2016); Alexander et al. (2016)

Pasham & van Velzen (2017)

Multi-wavelength tour: infrared emission

Artis impression Image credit: NASA, van Velzen et al. Simulation image: Guillochon et al. 1.65

We detected a "dust echo"

van Velzen et al. (2016b)

- L_{abs} ~ 10⁴⁵ erg/s
- Covering factor: Labs/Ldust~ 1%

Multi-wavelength tour (final stop): optical emission

"Disk powered"

"Stream powered"

Nicholl et al. (2019)

Bonnerot & Lu (2019

ASASSN-19bt; Holoien et al. (2019)

Radius from very early time observations

- TESS data
- L ~ t², homologous expansion?
- Unknown temperature evolution limits R(t=0) measurement

Bowen fluorescence: rapid disk formation?

- N III and OIII emission lines (Blagorodnova et al. 2019, Leloudas et al. 2019)
- Implies source of EUV photons (λ<228Å)

Late-time UV excess: delayed disk formation

What's next? ZTF!

van Velzen, Gezari et al. in prep (2019)

Conclusions

- Optical emission mechanism still unknown; but stay tuned for more discoveries (eg, ZTF)
- We started to use TDEs as tool to measure:
 - SMBH spin (Leloudas et al. 2016, Stone & van Velzen 2019)
 - Accretion disk formation (van Velzen et al. 2019, Wevers et al. 2019)
 - Jet-disk coupling (Pasham & van Velzen 2018, Mattila et al. 2018)
 - Nuclear dust on sub-pc scales (eg, van Velzen et al. 2016, Lu et al. 2016)

Calibrate loss cone filling

- Tidal flares often found in poststarburst galaxies (Arcavi+14; French+16)
- This preference can be explained by high stellar concentration
- Can be tested using Hubble Space Telescope (HST) observations

NGC 3156 (z=0.0044); Stone & van Velzen (2016)

Calibrate loss cone filling

- NGC 3156:
 - Careful surface brightness measurements
 - Detected very steep inner slope
 - Factor ~10 enhanced to stellar disruption rate
- In the near-future:
 - Approved HST observations

Stone & van Velzen (2016)

The M- σ relation and its limitations

