Echo Tomography of Black Hole Accretion Flows in AGN

- 1: SDSS-RM: Composite Mean and RMS of 849 quasars
 - The RMS spectrum fits $f_v \sim v^{1/3}$
 - 2: STORM on NGC 5548: Continuum delay maps
 - Disc inclination: $i = 36^{\circ} + / 10^{\circ}$
 - $\tau(\lambda) => \text{Disc } T(R) \text{ is steeper than expected} \quad T \sim R^{-1}$
 - Disc surface brightness is lower than expected
 - X-rays alone are not driving the UV/optical variations
- 3: STORM on NGC 5548: Emission-Line velocity-delay maps
- BLR is Keplerian from 2 to 20 light days
 - $M_{\rm BH}$ = 7 x 10⁷ M_{sun}. BLR inclination *i* = 45^o
 - Sharp outer rim. Far side obscured. Barber-pole residuals.

Keith Horne, SUPA St Andrews

Quasars in Crisis 2019 Aug 08

SDSS-RM (Reverberation Mapping)

- PI: Yue Shen
- SDSS spectroscopic monitoring of 849 quasars (0.12<*z*<4.3) (plus ~100 comparison stars.)
- SDSS-III (2014, 32 epochs/6mo)
- SDSS-IV (2015-2019+..., 12 epochs /6mo)
- Bok+CFHT photometric (g,i) monitoring.
- Primary Goals: Measure light travel time delays.
 Emission-line lag vs continuum => black hole masses
- Continuum lag vs wavelength => accretion disk T(r) profiles.
- Pilot for SDSS-V => Black Hole Mapper

PrepSpec Analysis : Fit Residuals

Shen et al. 2016 ApJ 818, 30

PrepSpec : Mean and RMS spectra, Line and Continuum Lightcurves

BLR Lightcurve

Composite Mean and RMS Spectra

Composite Mean and RMS Spectra

Variations isolate the Disc Spectrum:

Composite Mean Spectrum

Composite RMS Spectrum

 $T \mu r^{-3/4} \triangleright f_n \mu n^{1/3}$

Horne+ in prep.

2014 STORM Campaign : NGC 5548

STORM = Space Telescope and Optical Reverberation Mapping

PI: Brad Peterson HST+Swift+Chandra+ground 180d in 2014.

Published :

- I: HST-COS observations. De Rosa+ (2015) ApJ 806:128
- II: Swift-HST continuum observations.- Edelson+ (2015) ApJ 806:129
- III: Continuum interband lags, FUV+optical Fausnaugh+ (2016) ApJ 821:56
- IV: Anomalous behavior of UV emission lines Goad+ (2016) ApJ 824:1
- V: Optical emission line variations Pei+ (2017) ApJ 837:131
- VI: Accretion disk modeling Starkey+ (2017) ApJ 835:65

VII: Chandra X-ray observations – Mathur+ (2017) ApJ 846:55 In the pipeline :

- VIII : Absorption line variations Kriss+ (2019) ApJ, in press.
 - IX : Velocity-delay maps Horne+ (2019) ApJ, in prep.
 - X : Photoionization modeling Dehghanian+(2019) ApJ, in press. Dynamical modeling – Pancoast+ NIR and *Spitzer* observations – TBD

STORM: UV, optical lightcurves

HST: 1/day SWIFT: 2 /day

Ground-based > 600 epochs

Edelson, et al. 2015

Fausnaugh, et al. 2016

Continuum Echo Mapping : T(R) profiles of Accretion Discs

- Measure the time delay spectrum $\tau(\lambda)$
 - To find the disk temperature profile *T*(*R*)
- Test disc models: $T \sim (M dM/dt)^{1/4} R^{-3/4} => \tau \sim \lambda^{4/3}$
- Measure Mass x Accretion Rate (*M dM/dt*)
- Distances ?

Accretion Disk Reverberations

Assumptions:

Light travel time: Thermal Emission: Flat geometry:

Lightcurves $f(\lambda,t) => CCF Lags \tau(\lambda)$

UV (1150 A)

UV lightcurves (HST, Swift) Optical lightcurves (LCO+LT+... many telescopes) Cross-correlate to find time delay vs wavelength.

Fausnaugh, et al. 2016

Echo Tomography Beyond CCF Time Lags

Light travel time delay τ "slices up" the region on iso-delay paraboloids. => micro-arcsec resolution.

Blackbody Disc Delay Maps

Mean delay $< \tau > \sim (M M dot)^{1/3} \lambda^{4/3}$ Independent of disk inclination.

Delay map shape depends on disk inclination

And slope α of $T(r) \sim R^{-\alpha}$ temperature profile

Theory: $\alpha = 3/4$

Starkey, et al. 2016

CREAM : MCMC Lightcurve Fits

Starkey, et al. 2017

Starkey, et al. 2017

Standard Disc Model Fails

How does the standard disc model fail?

Disk is too hot (or large). T(R) is too steep. Surface brightness is too dim.

Starkey, et al. 2017

Why does the disc model fail ?

Dust ? (affects flux but not delay) Wrong M_{BH} ? (higher / lower L_{edd}) Diffuse continuum from BLR ? Patchy irradiation (shadows) ? Tilted inner disc ?

X-rays vs Driving Lightcurve

X-ray variations don't match the inferred driving lightcurve. 🙁

UV variations do. ③

Starkey, et al. 2017

Need more delay smearing to blur the rapid X-ray variations.

80

хи<mark>3.0</mark> 2

Normalised 2.0

Normalised Flux

1.5

1.0 0.5

0.6

1.4 1.2

1.0

0.8

0.6

٥

20

40

60

Time (days)

а

Gardner & Done, 2016

Warps/Waves/Ripples on the Disc?

- Wave crests see the lamp-post.
- Shadows fill the troughs.
- Steepens *T(R)* profile, lowers surface brightness.

Starkey, Lin, Horne, in prep

- Tilted inner disc (aligning with BH spin).
- Anisotropic irradiation, self-irradiation.
- Precession (rotating structure) observable?

Nealon, Price, Nixon 2015 MNRAS 3d SPH simulations

2D: Velocity-Delay Maps $\Psi(v, \tau)$

STORM : 172 Daily HST/COS Spectra C IV Variations

De Rosa, et al. 2015

CCF Lags => BLR size R/c~6d

AGN STORM HST PROGRAM

Mean lags relative to 1367 Å continuum

Ly a	6.19 ± 0.27 days
Si IV	5.44 ± 0.70 days
C IV	5.33 ± 0.46 days
He II	2.50 ± 0.33 days

Cross-correlation lags

< τ > ~ R / c=> radius R of emission-line region

De Rosa, et al. 2015

M-shaped Velocity-Delay Structure

Pei, et al. 2017

HST (UV lines) Velocity-Delay Map

rest wavelength λ (Å)

Horne, et al. 2019

"Barber-Pole" Residuals

Echo Tomography of Black Hole Accretion Flows in AGN

- 1: SDSS-RM: Composite Mean and RMS of 849 quasars
 - The RMS spectrum fits $f_v \sim v^{1/3}$
 - 2: STORM on NGC 5548: Continuum delay maps
 - Disc inclination: $i = 36^{\circ} + / 10^{\circ}$
 - $\tau(\lambda) => \text{Disc } T(R) \text{ is steeper than expected} \quad T \sim R^{-1}$
 - Disc surface brightness is lower than expected
 - X-rays alone are not driving the UV/optical variations
- 3: STORM on NGC 5548: Emission-Line velocity-delay maps
- BLR is Keplerian from 2 to 20 light days
 - $M_{\rm BH}$ = 7 x 10⁷ M_{sun}. BLR inclination *i* = 45^o
 - Sharp outer rim. Far side obscured. Barber-pole residuals.

Keith Horne, SUPA St Andrews

Quasars in Crisis 2019 Aug 08

Keith Horne, SUPA St Andrews

Quasars in Crisis 2019 Aug 08