The (nanohertz) gravity side of the conversation...

Sarah Burke Spolaor

West Virginia University

With: NANOGrav collaboration

and WVU team: Peter Breiding, Rodney Elliott, Greg Walsh, Caitlin Witt

LIGO/Virgo [2015]

LISA [launches 2030ish]

Pulsar Timing Arrays [first discovery 2020s?]

 $10^8 \text{--} 10^{11} M_{sun}$

weeks-decades

 ${\sim}100~M_{sun}$

Movements take: seconds

hours-days

Pulsar Timing Arrays

MILLER FOR THE FORMATION OF THE PARTY OF THE

A Galactic-scale Gravitational Wave Observatory!

> PSR B1937+21: P = 1.5578064688197945 ms +/- 0.000000000000004 ms

GW Signals

Continuous Waves

BURST ("memory")

(e.g.)

Aggarwal et al. (2019)

Madison et al. (2016)

Stochastic Background

Ensemble signal from all binaries

Arzoumanian et al. (2018)

Images: NASA

Current state-of-art: testing "weird AGN"

3C66B: Early Multi-Messenger Astronomy

Galaxy 3C66B

TABLE 1 Detection Limits			
М	MAXIMUM ECCENTRICITY		
$(10^{10} M_{\odot})$	98%	95%	90%
1.3	0.03	0.49	0.51
1.2	0.02	0.49	0.51
1.1	0.02	0.16	0.23
1.0		0.03	0.18
0.9		0.02	0.04
0.8		0.01	0.03

Jenet et al (2004)

Actually saw...

"Weird AGN"

Periodic flares; OJ287 (Valtonen et al. 1988)

MJD

"Weird AGN"

Multiple jets/outflows e.g. Qian et al. 6.0rad 0 Jet A 3.0rad 4.5rad 6.0rad **Relative RA (mas)** 3.0rad 4.5rad Knot C31 Π. 0.5 Knot C7a Jet 3C279 -15 0.8 0 0.41.2 Relative Dec (mas)

Double-peaked/offset emission lines (Eracleous, Runnoe, Bogdanovic et al.)

Helical radio jets, e.g. Kun et al. (2013)

Caveat...

◇ Period:

- 1 week 30 years
- ◇ **Distance** (Aggarwal et al. 2019):
 - \circ z <= 2.2 for 10¹⁰ M⊙
 - \circ z <= 0.04 for 10⁹ M \odot
 - $\diamond~z <= 0.0005$ for 108 M \odot

Testing abnormal emissions

Source references:

Sundelius+97, Britzen+10, Decarli+10, Kudryavtseva+11, Eracleous+12, Carpineti+12, Bon+12, Ju+13, Sudou+03, Iguchi+10, Graham+15, Liu+15, Graham+15, Runnoe+15/17, d'Ascoli+18, Kelley+18, D'Orazio+18, and more!

Testing abnormal emissions

Sundelius+97, Britzen+10, Decarli+10, Kudryavtseva+11, Eracleous+12, Carpineti+12, Bon+12, Ju+13, Sudou+03, Iguchi+10, Graham+15, Liu+15, Graham+15, Runnoe+15/17, d'Ascoli+18, Kelley+18, D'Orazio+18, and more!

Future state-of-art: Multi-messenger AGN/circumbinary disk physics

Future Multi-messenger Targets

Simon & Burke-Spolaor (in prep)

PTA Parameter estimation

Orbital Frequency: +/-10% Inclination, phase: +/- 20 deg Sky location: 10's of deg² Mass/Distance: Degenerate.

> Sesana & Vecchio (2010) CBD image: Cuadra et al. (2009)

Low-hanging fruit

- Do orbits and jets align?
- Are two jets possible in a binary (geometries, scale sizes)?
- How does light variability compare with orbital period (disk resonances; variable heating; accretion dynamics)?
- Do we see expected BLR flux and velocity variability given measured orbital inclination?
- Is emission correlated between two SMBHs?

GW Signals

Continuous Waves

BURST ("memory")

(e.g.)

Aggarwal et al. (2019)

Madison et al. (2016)

Stochastic Background

Ensemble signal from all binaries

Arzoumanian et al. (2018)

Images: NASA

The Strain Spectrum

Understanding the GW Background

Understanding the GW Background

Taylor, Simon, & Sampson (2017)

Constraining Binary Inspiral!

NANOGrav 11-year data set. [Arzoumanian et al. 2018, led by Steve Taylor and others]

Pulsar Detection of Binary SMBHs

It appears likely that something drives efficient progression through to PTA band.

Summary

- Pulsar Timing can test AGN binary models!
 - Contact or join NANOGrav if interested.
 - ◊ <u>http://nanograv.org</u>
- ◊ Few MM sources can assess:
 - ◊ AGN geometries.
 - Circumbinary dynamics.
- GW Background AMPLITUDE and SLOPE will measure "last parsec" efficiency!