AGN and Quasars Accretion Processes Relativistic Jets

Aneta Siemiginowska Center for Astrophysics I Harvard & Smithsonian Chandra X-ray Center

A few Questions

- Why do we have jets?
- How do jets form and accelerate?
- Why do jets survive?

Radio VLA

Cygnus A - Model

Cygnus A: Observational Constraints

z=0.056

 $M_{bh} \sim 2.5(+/-0.7) \times 10^9 M_{sun}$ HST/Keck Tadhunter et al 2003,

 $L_{bol} \sim 10^{46} \ erg/s \sim 0.01 \ L/L_{Edd}$

X-rays: $N_H \sim 3 \times 10^{23} \text{ cm}^{-2} => \text{ hidden AGN}$

Young et al,. 2002, Reynolds et al 2015

several absorption components, H1, clumpy torus, ionized wind

Imaging AGN Torus

Carilli et al 2019

JVLA 18-48 GHz imaging

n>4000 cm⁻³

Cygnus A: Observational Constraints

 $\label{eq:Mbh} M_{bh} \sim 2.5 \ x 10^9 \ M_{sun} \\ L_{bol} \ \sim 10^{46} \ erg/s \ \sim \ 0.01 \ L/L_{Edd} \\$

filaments hotspots

> Snios et al 2018 Duffy et al 2018

Cygnus A: Observational Constraints

 $M_{bh}{\sim}2.5\ x10^9\ M_{sun}$

 $L_{bol} \sim 10^{46}~erg/s \sim 0.01~L/L_{Edd}$

Mach ~1.2-1.6 $t_{outburst} ~ 1.8 \times 10^7 \text{ yrs}$ $E_{ave} ~ 5 \times 10^{60} \text{ erg}$

> Snios et al 2018 Duffy et al 2018

- Cygnus A:
 - Hidden AGN surrounded by a clumpy torus
 - Cocoon shock total power of the outburst
 - Continuous jet delivers energy to the hotspots
 - Filaments disintegration of the cool core
 - $M_{dot} \sim 0.01 \text{ L/L}_{Edd}$

BH in M87

$M_{BH} \sim 6.5 \times 10^9 Msun$

1.3 mm emission radius $5r_g$ M_{dot} ~ 10⁻⁵ L/L_{Edd}

Constraints on BH Accretion in M87

 $M_{dot} (5r_g) \sim 10^{-5} L/L_{Edd}$

Russell et al. 2018

Jets Span Different Scales

Resolved X-ray Jets

3C273

PKS1127

R Harris DE, Krawczynski H. 2006. Annu. Rev. Astron. Astrophys. 44:463–506

Radio 14.4 GHz

Optical

X-rays

Marshall et al 2002

X-ray Flare from Jet Knot HST-1

~66 pc distance from the nucleus

Flare duration ~ 5 years

X-ray Jet of 3C 273 Quasar

Chandra ACIS-S PSF FWHM = 0.5 arcsec 90% EEF < 5 arcsec

3C 273 quasar at z = 0.158 10 arcsec = 27.5 kpc

X-ray Jet propagates outside the host galaxy.

Multi-band view of 3C 273 Jet

300 kpc Quasar Jet of PKS1127-145

Surface Brightness Profile

100 ksec Chandra image

Siemiginowska et al 2002, 2007

Jet Structure: Spine and Sheath Intermittent activity?

Intermittent jet in 4C 29.30

Intermittent jet in 4C 29.30

Low-z galaxy 60 kpc Radio Jet ~ 30 Myr old

Siemiginowska et al 2012 Sobolewska et al 2012

Past Activity of M87 BH

Chandra X-rays

Forman et al 2015

- Continuous current jet in Cygnus A and M87
- Intermittent outbursts

Young Jets - Compact Radio Sources

X-ray Absorption in CSOs

• X-ray absorbed CSOs appear to have smaller radio size than unabsorbed CSOs with the same radio luminosity at 5 GHz: confinement?

Compact Size of the Absorbers

- No detection of X-ray obscuration in CSOs with radio sizes > few tens of parsec: fundamental implications for:
 - the origin of X-ray emission
 - location of X-ray obscurer
 - interactions of expanding jet with the ISM

Jet Power? - High density Environment

 X-ray absorbed CSOs appear to be more radio luminous than X-ray unabsorbed CSOs with the same radio size: born in high density environment? higher jet power?

Young Radio Sources at High Redshift

Chandra sample of spectral peaked/steep radio sources at high-z

Jets at High Redshift

- Jets signal active black hole accretion.
- Require central nuclei of high-z galaxies to be well developed to sustain accretion
- Jet production process is efficient and persists long enough to produce the structures on scales of tens to hundreds of kiloparsecs.
- Jets can shock heat ambient gas and trigger early star formation in the early Universe.
- Jets can be amplified by increased energy density of the Cosmic Microwave Background

Timescales

- BH Mass ~ $10^9 M_{sun}$
 - BH formation, constraints at high-z
- Fuel supply
 - amount? steady or intermittent?
- Galaxy scale
 - ISM interactions, energy dissipation, continuous activity
- Galaxy clusters
 - active jets in X-rays, hotspots, lobes livetimes, and energetics, history?

Aneta Siemiginowska

A few Questions

- Why do we have jets?
 - accretion modes
- How do jets form and accelerate?
 - BZ/BP need B field, spin, collimation
- Why do jets survive?
 - instabilities (e.g. KH, RT, CF) in 3D simulations

- History of AGN Black Hole activity is imprinted in the large scale structures
- Timescales: old and young structures
- What determines the onset of BH activity?
- Potential differences in the environment in very close vicinity of a BH - direct impact on BH feeding and feedback