

Main Trends of the Main Sequence Un-Fudging The Virial factor

SWAYAMTRUPTA PANDA^{1,3} • PAOLA MARZIANI² • BOŻENA CZERNY¹

¹CENTER FOR THEORETICAL PHYSICS, WARSAW ²INAF-ASTRONOMICAL OBSERVATORY OF PADOVA ³NICOLAUS COPERNICUS ASTRONOMICAL CENTER, WARSAW

The "fudgy" Virial factor (*f*)

"How does one evaluate and interpret the scaling factor f?"

Collin et al. (2006)

Prof. Suzy Collin–Zahn Chercheur retraitée associée à l'Observatoire de Paris

The "fudgy" Virial factor (*f*)

"We are characterizing the size and velocity dispersion of the BLR by single numbers, we are subsuming a lot of our ignorance of AGN structure into this single parameter (Collin et al. 2006)"

"Given the complicated structures of BLRs inferred from the velocity-binned RMs, f is most likely to vary from object to object (e.g. Xiao et al. 2018)"

"By modelling simultaneously the AGNs continuum light curve and H β line profiles, some BLRs dynamical models found that there was a wide range of f and it has a correlation with the inclination angle, or M_{BH} (e.g. Pancoast et al. 2014; Grier et al. 2017a; Williams et al. 2018; Pancoast et al. 2018; Li et al. 2018)"

"variable" Virial factor

Mejía-Restrepo et al. (2017)

"variable" Virial factor

Martínez-Aldama et al. (2019)

"variable" Virial factor

Berton et al. (2017)

Fraix-Burnet et al. (2017)

QUASAR MAIN SEQUENCE

• Schema for the Eigenvector 1

Principal Component Analysis (PCA)

- 13 tabulated properties
- Eigenvector 1: FeII [OIII] anti-correlation
- Peak λ5007 and Hβ FWHM correlation

Boroson & Green (1992)

FeII emission within 4434–4684Å wrt broad H β

Shen & Ho (2014)

• Schema for the Eigenvector 1

Why this scheme?

- The Shen & Ho (2014) use automatic disk fitting to estimate the underlying continuum \Rightarrow R_{FeII} values likely 'unreliable'
- Also, NOT z-limited!

Śniegowska et al. 2018, A&A, 613, 38

Panda et al. (2019b)

"Looking at it" differently

Modelling the optical plane

- Mainly as a function of black hole mass ど accretion rate
- Theoretical SED shapes, local density, cloud composition

"Looking at it" differently

Modelling the optical plane

• Mainly as a function of black hole mass & accretion rate

$$K = v_{iso} / v_{K}$$
Effect of viewing angle (f-factor)
$$M_{\rm BH} = f \frac{r_{\rm BLR} F W H M^{2}}{G} = \frac{r_{\rm BLR} F W H M^{2}}{G(4 \cdot (\kappa^{2} + \sin^{2} \theta))}$$

• Theoretical SED shapes, local density, cloud composition 1 ~

"Looking at it" differently

Modelling the optical plane

- Mainly as a function of black hole mass ど accretion rate
- Theoretical SED shapes, local density, cloud composition

Effect of viewing angle (f-factor)

$$M_{\rm BH} = f \frac{r_{\rm BLR} \rm FWHM^2}{G} = \frac{r_{\rm BLR} \rm FWHM^2}{G(4 \cdot (\kappa^2 + \sin^2 \theta))}$$

account for R_{FeII} values in each spectral type along the MS, in a way consistent with the observational trends in metallicity, density, and SED

 $K = v_{iso} / v_{K}$

 $K = v_{iso} / v_{K}$

"Looking at it" differently

Modelling the optical plane

- Mainly as a function of black hole mass ど accretion rate
- Theoretical SED shapes, local density, cloud composition

Effect of viewing angle (f-factor)

$$M_{\rm BH} = f \frac{r_{\rm BLR} \rm FWHM^2}{G} = \frac{r_{\rm BLR} \rm FWHM^2}{G(4 \cdot (\kappa^2 + \sin^2 \theta))}$$

account for R_{FeII} values in each spectral type along the MS, in a way consistent with the observational trends in metallicity, density, and SED

arXiv:1905.01729

H β radius-luminosity (monochromatic at 5100Å) with previous measurements in blue (Bentz & Katz 2015) and green (Du et al. 2016) and in black (Grier et al. 2017). The red solid and dashed lines show the best-fit relation and it's measure scatter from Bentz et al. (2013).

Results from a set of CLOUDY simulations performed on a constant density single BLR cloud assuming $M_{BH} = 10^8 M_{\odot}$ showing the distribution of changing FeII strength with changing BLR sizes computed from the virial relation. Open circles mark the R_{FeII} values expected for $\theta = 30^{\circ}$ and $\theta = 45^{\circ}$. The color patches (in red) denote the range of R_{FeII} values as expected from observational evidences.

The Population A sources (with 'narrower' Hβ FWHM)

The Population A sources (with 'narrower' Hβ FWHM)

And the Population B sources (with 'broader' Hβ FWHM)

arXiv:1905.01729

Let's make this more fun, Shall we?

Higher λ_{Edd} \leftrightarrow Shorter R_{BLR} \leftrightarrow Higher FeII strength

Representative case showing the distribution of Eddington ratio vs size of the BLR as a function of the FeII strength (also shown by the contours). The plot is generated for input parameters for a "typical" xA source. The red dashed line marks the onset of the Type-2 sources (60°).

Panda et al. - in prep.

Higher λ_{Edd} \leftrightarrow Shorter R_{BLR} \leftrightarrow Higher FeII strength

Representative case showing the distribution of Eddington ratio vs size of the BLR as a function of the FeII strength (also shown by the contours). The plot is generated for input parameters for a "typical" xA source. The red dashed line marks the onset of the Type-2 sources (60°).

These results agree to our findings in Martínez-Aldama et al. (2019).

Panda et al. - in prep.

Constraining the viewing angle - *Mrk335*: Metallicity - cloud density distribution as a function of R_{FeII} with turbulence (A) 0 km/s; (B) 10 km/s. The montage is shown for the best case inclination angle and the corresponding BLR size computed from the virial relation. The BLR size from the Bentz et al. 2013 *R-L* relation is shown for λ_{Edd} =0.33 and M_{BH} =10⁷ M_{o} .

Constraining the viewing angle - *Mrk335*: Metallicity - cloud density distribution as a function of R_{FeII} with turbulence (A) 0 km/s; (B) 10 km/s. The montage is shown for the best case inclination angle and the corresponding BLR size computed from the virial relation. The BLR size from the Bentz et al. 2013 *R-L* relation is shown for λ_{Edd} =0.33 and M_{BH} =10⁷ M_{\odot} .

Constraining the viewing angle - *Mrk335*: Metallicity - cloud density distribution as a function of R_{FeII} with turbulence (A) 0 km/s; (B) 10 km/s. The montage is shown for the best case inclination angle and the corresponding BLR size computed from the virial relation. The BLR size from the Bentz et al. 2013 *R-L* relation is shown for λ_{Edd} =0.33 and M_{BH} =10⁷ M_{\odot} .

Constraining the viewing angle - *Mrk335*: Metallicity - cloud density distribution as a function of R_{Fell} with turbulence (A) 0 km/s; (B) 10 km/s. The montage is shown for the best case inclination angle and the corresponding BLR size computed from the virial relation. The BLR size from the Bentz et al. 2013 *R*-*L* relation is shown for λ_{Edd} =0.33 and M_{BH} =10⁷ M_{\odot} .

Changing *** can be addressed as well - The answer is in the SED

Summary

- The 'entire' quasar main sequence can be explained as a function of Eddington ratio, density, cloud composition and *viewing angle*.
- Our analyses explains the rarity of extreme FeII emitters and the use of xA sources as distance indicators in Cosmology.
- We further our model:
 - To understand the interplay between the physical quantities that drive the main sequence
 - To exploit this 'full' parameter space to constrain the *viewing angle* for <u>real sources</u>
 - This further allows us to check the validity of standard R_{BLR}-L₅₁₀₀ scaling relation esp. for extreme sources

---X------

Exciting new results coming soon!

Multi-parameter space visualizations

M8 SED compare, A1 vturb o

Multi-parameter space visualizations

M10 vturb 0, 10, 100, Kor, A1

