Changing look microquasars

Teo Muñoz Darias RYC ADVANCED FELLOW @ IAC-TENERIFE

Investigación Programa Ramón y Cajal

Changing look microquasars

Why QSO variability lovers (might want to) care about STELLAR-MASS Black Holes

Teo Muñoz Darias

RYC ADVANCED FELLOW @ IAC-TENERIFE

(Low-Mass) X-ray Binaries

Low-mass star transferring matter onto Black Hole via an **accretion disc**

Credit: G. Perez (IAC)

(Low-Mass) X-ray Binaries

Low-mass star transferring matter onto Black Hole via an **accretion disc**

Credit: G. Perez (IAC)

BLACK HOLES are **TRANSIENT**

Quiescence

see e.g. Casares & Jonker 2014

Outburst see e.g. Fender & Muñoz-Darias 2016

Dynamical BH masses

Accretion Processes General Relativity

BLACK HOLES are **TRANSIENT**

Quiescence

see e.g. Casares & Jonker 2014

Outburst

see e.g. Fender & Muñoz-Darias 2016

Dynamical BH masses

Accretion Processes General Relativity

ACCRETION STATES

e.g. Remillard & McClintock 2006 / Belloni et al. 2011

ACCRETION/OUTFLOW PROPERTIES

This was the picture in 2015 (e.g. Fender & Muñoz-Darias 2016)

ACCRETION STATES IN AGN ?

Koerding, Jester and Fender 2006

SAMPLE OF DIFFERENT AGN (Type I)

- Radio Luminosity
- Optical —> Disc Luminosity

 X-rays —> Comptonization Component

Mass and K-correction

ACCRETION/OUTFLOW PROPERTIES

This was the picture in 2015 (e.g. Fender & Muñoz-Darias 2016)

V404 Cygni: a nearby and powerful BH transient

V404 Cyg is a ~10 M☉ is black-Hole in a 6.5 day orbital period at 2.4 kpc (Casares, Charles & Naylor 1992, Nature; Miller-Jones et al. 2009)

★ Very large accretion disc with $R_{out} \sim 30$ light seconds (9 x 10⁶ km) ★ In quiescence since 1989....back in outburst in June 2015

V404 Cygni: a nearby and powerful BH transient

V404 Cyg is a ~10 M☉ is black-Hole in a 6.5 day orbital period at 2.4 kpc (Casares, Charles & Naylor 1992, Nature; Miller-Jones et al. 2009)

★ Very large accretion disc with $R_{out} \sim 30$ light seconds (9 x 10⁶ km) ★ In quiescence since 1989....back in outburst in June 2015

V404 Cygni: 2015 Outburst

X-rays (20-200 keV): Superb INTEGRAL coverage

Rodriguez et al. 2015; Roques et al. 2015; Muñoz-Darias et al. 2016; Motta et al. 2017

Radio (16 GHz): AMI (Cambridge, UK)

Muñoz-Darias et al. 2016; Motta et al. 2017; Fender et al. in prep.

V404 Cygni: 2015 Outburst

10 + 5 days

BUT VERY SHORT...

Optical Accretion disc wind from V404 Cyg

GTC 10.4m telescope

P-CYG PROFILES IN 12 EMISSION LINES

Muñoz-Darias et al. 2016, Nature

Muñoz-Darias et al. 2016, Nature

P-Cyg Profiles in 12 emission lines

High-velocity, optical wind <u>simultaneous with the radio jet</u> Strong flaring activity and high intrinsic extinction Motta et al. 2017 X-ray wind detected by Chandra King et al. 2015

NEBULAR PHASE

Muñoz-Darias et al. 2016, (see also Rahoui et al. 2016 and Mata-Sanchez et al. 2018)

Optically thick to optically thin transition

NEBULAR PHASE

Muñoz-Darias et al. 2016, (see also Rahoui et al. 2016 and Mata-Sanchez et al. 2018)

Optically thick to optically thin transition

NEBULAR PHASE

Muñoz-Darias et al. 2016, (see also Rahoui et al. 2016 and Mata-Sanchez et al. 2018)

Optically thick to optically thin transition

Mass Balance (King, Kolb, Burderi 1996)

Disc contains: $M_{disc} \sim 10^{-5} M_{\odot}$

- Ejected Mass: >> 0.001 M_{disc} ~0.1 M_{disc} Casares et al. 2019
- Accreted Mass: ~ 0.001 Mdisc
- Transferred Mass (quiescence): ~ 0.003 Mdisc

Mass Balance (King, Kolb, Burderi 1996)

Disc contains: $M_{disc} \sim 10^{-5} \text{ M}_{\odot}$

- Ejected Mass: >> $0.001 \text{ M}_{\text{disc}}$ ~ $0.1 \text{ M}_{\text{disc}}$ Casares et al. 2019
- Accreted Mass: ~ 0.001 Mdisc
- Transferred Mass (quiescence): ~ 0.003 Mdisc

Mass Balance (King, Kolb, Burderi 1996)

Disc contains: $M_{disc} \sim 10^{-5} M_{\odot}$

- Ejected Mass: >> 0.001 M_{disc} ~0.1 M_{disc} Casares et al. 2019
- Accreted Mass: ~ 0.001 Mdisc
- Transferred Mass (quiescence): ~ 0.003 Mdisc

disc ~ 30 l.s.

Innermost 3 I.s. (Consistent with <u>thermal wind</u> launching radius)

The wind is regulating the outburst! (?)

Muñoz-Darias et al. 2016, Nature

Credit. G. Perez (IAC)

The wind is regulating the outburst! (?)

Muñoz-Darias et al. 2016, Nature

Credit. G. Perez (IAC)

Conspicuous optical winds in other BHs transients

Muñoz-Darias, Torres & Garcia, 2018, MNRAS

Muñoz-Darias et al. 2019 ApJ Lett.

See Shidatsu et al. 2018, 2019 for the outburst evolution

MAXI J1820+070: weak features from a state-dependent cold wind

MAXI J1820+070: weak features from a state-dependent cold wind

MAXI J1820+070: weak features from a state-dependent cold wind

ACCRETION/OUTFLOW COUPLING

ACCRETION/OUTFLOW COUPLING

Optical dipper seen at very high inclination (Corral Santana et al. 2013, Science)

Optical dipper seen at very high inclination (Corral Santana et al. 2013, Science)

Optical dipper seen at very high inclination (Corral Santana et al. 2013, Science)

Black Hole transient optical dipper seen at high inclination (Corral Santana et al. 2013)

Dip-resolved spectroscopy Jiménez-Ibarra, TMD et al. 2019, MNRAS

Jiménez-Ibarra, TMD et al. 2019, MNRAS

Equatorial outflow: Blue-shifted absorptions a 0.01c (blue-edge) Launching radius (scape velocity) consistent with dip recurrence period Outflowing structure at ~ 10⁵ km (7000 Rg)

Jiménez-Ibarra, TMD et al. 2019, MNRAS

Equatorial outflow: Blue-shifted absorptions a 0.01c (blue-edge) Launching radius (scape velocity) consistent with dip recurrence period Outflowing structure at ~ 10⁵ km (7000 Rg)

Blue-shifted absorptions observed later in the outburst and modelled by dense and hot outflow component (Charles et al. 2019, MNRAS)

Stellar-mass Black Holes allow us to:

- To study accreting BHs on human beings time scales and cleaner environments
- To establish an "Accretion-Ejection" scheme (which may be present in AGN to some extent)

Strong emission/absorption line variability

- In most cases linked to outflows. They do impact on accretion
- Obscuration effects (might be also related to outflows).