

The Red Qudsdr Crisis: where do they fit into the QSO population? Quasars in Crisis, ROE, 6 — 9 August 2019

Lizelke Klindt Dave Alexander, David Rosario, Elisabeta Lusso, & Sotiria Fotopoulou

Acknowledge: Chris Done, Nicholas P. Ross, Benny Trakhtenbrot, Manda Banerji, Alastair Edge, Richard McMahon, Andrea Merloni, Adam D. Myers & Gordon T. Richards

Conventional picture of quasars

Red Quasars: a peculiar subpopulation Redder colours and spectra: suppressed blue emission.

Evidence for a large undetected population of dust-reddened quasars

Rachel L. Webster*, Paul J. Francis*, Bruce A. Peterson[†], Michael J. Drinkwater[‡] & Frank J. Masci*

* School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

† Mount Stromlo and Siding Springs Observatory, The Australian National University, Private Bag, Weston Creek Post Office, ACT 2611, Australia ‡ Anglo-Australian Observatory, Coonabarabran, NSW 2357, Australia

QUASARS have been detected at many wavelengths, but often ones that are bright at one wavelength are very faint or undetectable at other wavelengths. It has therefore been impossible to design a single search technique that would identify all quasars, raising the question of how many may have gone unidentified. Here we show that quasars selected from a radio catalogue have a wide range of optical colours, which we interpret as arising from varying amounts of dust along the line of sight. Most of this dust probably lies within the quasar host galaxy. If the radio-quiet quasars that would normally be detected optically contain as much dust as the radioloud ones (and have gone undetected at other wavelengths) then

e.g., Webster+1995; Glikman+2004; Urrutia+2009; Glikman+2012; +++

Sample selection Radio-detection Morphologies Radio Loudness

Summary

Red Quasars: a peculiar subpopulation

1982 Rieke, Lebofsky & BX CBSS Wisniewski 1995 1998 Benn+ 2000 Francis+ 2001 Whiting, Webster & Francis 2002 2003 2004 2019

Proposed origins of red quasars: Orientation vs. Evolution

Proposed origins of red guasars: Orientation vs. Evolution

Blue quasar

- **Blue unobscured view of BLR**
- **Broad emission lines superimposed** onto continuum that peaks in UV

Red quasar

- **Grazing view with additional dust** along line-of sight.
- **Broad emission lines are still** present (Type I), but spectrum is suppressed at shorter wavelengths.

Sample selection Radio-detection Morphologies Radio Loudness Summary

Proposed origins of red guasars: Orientation vs. Evolution

Blue quasar

- **Blue unobscured view of BLR**
- **Broad emission lines superimposed** onto continuum that peaks in UV

Red quasar

- **Grazing view with additional dust** along line-of sight.
- **Broad emission lines are still** present (Type I), but spectrum is suppressed at shorter wavelengths.
- In this scenario red and blue guasars would be expected to be intrinsically similar!

Sample selection Radio-detection Morphologies Radio Loudness Summary

Sample selection

Radio-detection

Merging galaxies

Starburst

Preferentially obscured

see e.g., Sanders+1998; Hopkins+2008; Alexander & Hickox 2012; Glikman+2012+++

Morphologies

Radio Loudness

Summary

Proposed origins of red gudsdrs: Orientation vs. Evolution

Preferentially unobscured

Sample selection Radio-detection

Proposed origins of red gudsdrs: Orientation vs. Evolution

Red quasars

In this model the "nuclear environments" are effectively different for red and blue guasars

see e.g., Sanders+1998; Hopkins+2008; Alexander & Hickox 2012; Glikman+2012+++

Morphologies Radio Loudness Summary

galaxy

Blue (unobscured) Red (obscured) qudSdr qudsdr

Objectives

statistics.

to ultimately fit another piece to the red quasar puzzle.

Test between these two proposed models for the <u>existence of red qudsdrs</u>.

Limitations of previous work is that studies did not <u>uniformly select red dnd</u> blue <u>qudSdrS</u> from the same parent sample and they were limited in source

Aim of our study is to address this via a <u>cdrefully controlled experiment</u> and

Radio-detection

Selecting red and blue guasars

Morphologies Radio Loudness

Summary

Klindt+2019

Sample selection

Selecting red and blue quasars

Radio-detection Morphologies Radio Loudness

Summary

Klindt+2019

Colour & radiouniform sample 60,000

Sample selection

Radio-detection

Dust reddening: $\Delta(q^* - i^*)$

Measure of quasar colour relative to median quasar at the same redshift (e.g., Richards+2003).

Morphologies

Radio Loudness

Red quasars

Radio-detection

Dust reddening: $\Delta(q^* - i^*)$

Measure of quasar colour relative to median quasar at the same redshift (e.g., Richards+2003).

$$\Delta(g^* - i^*)$$

$$\clubsuit$$

$$A_V \sim 0.1 - 0.5 \text{ mag}$$

On the basis of the evidence we have, the majority of our red quasars are **DUST REDDENED** but not obscured!

Morphologies

Radio Loudness

Red quasars

Radio-detection

Dust reddening: $\Delta(g^* - i^*)$

Measure of quasar colour relative to median quasar at the same redshift (e.g., Richards+2003).

$$\Delta(g^* - i^*)$$

$$\clubsuit$$

$$A_V \sim 0.1 - 0.5 \text{ mag}$$

- On the basis of the evidence we have, the majority of our red quasars are **DUST REDDENED** but not obscured!
- NIR selected red quasars have dust extinctions of up to $A_v \sim 1 - 6$ mag. see e.g., Glikman+2004; Banerji+2012

Morphologies

Radio Loudness

Red quasars

Radio-detection

Dust reddening:
$$\Delta(g^* - i^*)$$

Measure of quasar colour relative to median quasar at the same redshift (e.g., Richards+2003).

$$\Delta(g^* - i^*)$$

 \Box
 $A_V \sim 0.1 - 0.5 mag$

-og Normalized λF_{λ} -1.0 -2.2

- On the basis of the evidence we have, the majority of our red quasars are DUST REDDENED but not obscured!
- NIR selected red quasars have dust __2.0 ______
 extinctions of up to A_V ~ 1 6 mag. _______
 See e.g., Glikman+2004; Banerji+2012

Red quasars

Radio-detection

Dust reddening:
$$\Delta(g^* - i^*)$$

Measure of quasar colour relative to median quasar at the same redshift (e.g., Richards+2003).

$$\Delta(g^* - i^*)$$

$$\nabla$$

$$A_V \sim 0.1 - 0.5 \text{ mag}$$

Normalized λF_{λ} -0.5 Log -1.0

- On the basis of the evidence we have, the majority of our red quasars are **DUST** REDDENED but not obscured!
- NIR selected red quasars have dust -2.0 extinctions of up to $A_v \sim 1 - 6$ mag. see e.g., Glikman+2004; Banerji+2012

Sample selection Radio-detection

Radio emission — FIRST 1.4 GHz

frequency = 1.4 GHz

Radio Loudness Morphologies

Faint Images of the Radio Sky at Twenty-centimeters

resolution = 5" projected sizes = 43 kpc at z = 1.5

detection threshold = 1 mJy

Sample selection Radio-detection

radio-detection rate

Morphologies Radio Loudness

Radio emission — FIRST 1.4 GHz

radio morphologies

radio loudness

Radio-detection

FIRST-detection fraction

blue QSO 5 — 10%

0.25

0.20 FIRST, 1.4 GHz 0.1 12 0.10 -

0.05

blue QSO

Radio-detection Sample selection Red quasars

FIRST-detection frdction

5 — 10% blue QSO

control QSO 5 — 10%

> 0.20 FIRST, 1.4 GHz 0.1 12 0.10 -

> > 0.05

Sample selection **Radio-detection** Red quasars

FIRST-detection frdction

- 5 10% blue QSO 0.25 control QSO 5 --- 10% 0.20 4 GHz red QSO 17 - 22% We see a significant enhancement in
- the detection rate of red quasars across all redshifts.

FIRST, 1. 0.10 -

0.05

Sample selection Radio-detection Red quasars

FIRST-detection frdction

We see a significant enhancement in the detection rate of red quasars across all redshifts.		<i>J</i> FIRST, 1.
red QSO	17 — 22%	4 GHz 0.20
controlQSO	5 — 10%	0.20
blue QSO	5 — 10%	0 25

Match in rest frame 6 µm luminosity * and redshift. Result holds!

0.05

Sample selection Radio-detection Red quasars

FIRST-detection frdction

- blue QSO 5 --- 10% 0.25 control QSO 5 — 10% 0.20 4 GHz 17 — 22% red QSO
- We see a significant enhancement in the detection rate of red quasars across all redshifts.
- Match in rest-frame 6 µm luminosity and redshift.
 - 0.05Result holds!
- Note we don't see significant differences in BH mass and Edd ratio after matching in $L_{6\mu m}$ and z.

radio-detection rate

Radio Loudness

Summary

Radio emission — FIRST 1.4 GHz

radio morphologies

radio loudness

Visually assessed ~1400 FIRST cutouts to classify radio-detected quasars

Visually assessed ~1400 FIRST cutouts to classify radio-detected quasars Extended FR II Compact

Faint

F_{peak} < 3 mJy

Sample selection Radio-detection

Radio morphologies

Blue & control QSOs have similar fractions in all morphology classes.

Radio Loudness Morphologies

Radio morphologies

Blue & control QSOs have similar fractions in all morphology classes.

Red QSOs have similar FIRST detection fractions to the blue and control QSOs in the extended classes.

(%) 10 sample colour-selected of ercentage 0.1 Р

Radio Loudness Morphologies

Radio morphologies

Blue & control QSOs have similar fractions in all morphology classes.

Red QSOs have similar FIRST detection fractions to the blue and control QSOs in the extended classes.

A factor of 2–6 more rQSOs have either compact radio emission or are radio faint, in comparison to blue quasars.

Radio Loudness Morphologies

Sample selection

Radio-detection

Morphologies

Radio Loudness

Summary

Going deeper & resolving smaller scales

- * SDSS DR14 half a million QSOs * Even when going 2 orders of magnitude deeper we see an enhancement in the radiodetection rate of red quasars.
- * Starting to see radio differences at the host galaxy scale.

radio-detection rate

Morphologies

Radio Loudness

Summary

Radio emission — FIRST 1.4 GHz

radio morphologies

radio loudness

Excess of red radio-detected quasars near the detection limit.

Sample selection Radio-detection Red quasars

footnote: do red guasars have different accretion rates?

- * No strong differences in the average accretion rates between red and blue quasars.
- Further explore this with our X-shooter sample!

NIR selected QSOs have higher accretion rates (e.g., Richards+2003, Urrutia+2012 & Kim+2015).

Klindt+2019

Radio loudness $R = f_{radio} / f_{optical}$

Relative ratio of the quasar in the radio band to the overall accretion power.

 $R = \log_{10}(L_{1.4GHz}/L_{b\mu m})$

No excess of blue quasars relative to control quasars.

Radio loudness $R = f_{radio} / f_{optical}$

Relative ratio of the quasar in the radio band to the overall accretion power.

 $R = \log_{10}(L_{1.4GHz}/L_{b\mu m})$

- No excess of blue quasars relative to control quasars.

No excess of red quasars relative to control quasars at radio-loud end.

Excess of red quasars which are radio-quiet or radio-intermediate.

Sample selection Radio-detection

Radio loudness

Panessa+2019 see also Zakamska & Greene (2014); Hwang+2018

Sample selection

Radio-detection

Radio loudness

Anti-correlation between ionised winds and the radio loudness parameter (Mehdipour+2019).

Sample selection Radio-detection

Radio loudness

Explore whether the radio emission comes from winds

e.g., Najita+2000; Ross+2015; Hamann+2017; Morabito+ 2018; +++

Morphologies **Radio Loudness** Summary

The LOFAR view of red quasars

- LoTSS: image entire northern sky * @ 120-168 MHz with 6" resolution.
- **Confirmation of enhanced radio** * emission in the red QSO population.

Sample selection Radio-detection

Morphologies **Radio Loudness**

The LOFAR view of red quasars

- LoTSS: image entire northern sky * @ 120-168 MHz with 6" resolution.
- **Confirmation of enhanced radio** * emission in the red QSO population.
- At lower R values the enhancement * drops.
- **Enhancement is due to AGN** * processes?

Rosario+2019, in prep

Sample selection Radio-detection Morphologies Radio Loudness

We think that the majority of red quasars are younger systems...

see also Georgakakis+2012; Glikman+2012; Sobolewska+2018; +++

strong winds

dust obscured nucleus

compact, young jets

Red Quasar

Summary

unobscured nucleus

extended, evolved jets

Blue Quasar

Sample selection Radio-detection

XMM-Newton 5 red quasars + archival

Morphologies

Radio Loudness

* Optically selected red quasars have an enhanced radio-detection fraction. * These red quasars are preferentially compact and radio-quiet. Our results favour evolution over orientation.

"Look up into the heavens, Who created all the stars? He brings them out like an army, one after another, calling each by its name. Because of his great power and incomparable strength, not a single one is missing." — Isaiah 40:26

Take home message

Thank you Thank you Questions?

Bhillippinfarlsxy

kineshgundhöffighesticalas blown dwdy Sust

Credit: S. Munro & L. Klindt

BackupS...

Rest-frame L_{bum} vs. redshift

This is the signature that we would expect for dust reddening as the shorter wavelength emission will be more suppressed for a fixed amount of obscuration than longer wavelength emission.

MIR is a more reliable measurement of the intrinsic AGN power!

Rest-frame Loum VS. Lool, Shen

MIR is a more reliable measurement of the intrinsic AGN power!

Klindt+ 2019

2.25 2.00 1.75 - 1.50 - 1.25 - 1.00 - 0.75 - 0.50 0.25

L1.4GHz vs redshift

Klindt+ 2019

Red Synchrotron component?

Klindt+ 2019

The LOFAR view of red quasars

Rosario+ 2019, in prep

Going deeper & resolving smaller scales E z=0.84 z=0.73 z=0.37 z=0.82 z=0.4 С E 4.5 selected sample (%) N 2 2 2 2 0 5 2 2 2 z=1.04 z=0.86 z=0.94 z=1.03 z=1.05 С E F Ε z=1.06 z=1.51 z=1.27 z=1.07 z=1.51 2.0 of colour С Е E E Е 1.5 Fraction 0.5 1.0 z=1.59 z=1.84 z=1.57 z=1.91 z=2.12 E Fawcett+ 2019, in prep 0.0 Faint Compact z=2.25 z=2.32

Going deeper & resolving smaller scales

