

10,000 M_o black hole in NGC 4395

- primordial or no feedback?

Jong-Hak Woo (Seoul National University)

Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona

Black hole population in the local universe

- AGN feedback derives the M-sigma relation?
- lower limit of mass of giant black holes?

Formation of giant black holes

Greene+12

Nearby Seyfert 1 galaxy NGC 4395

- A dwarf galaxy ($M_{stellar} < 10^9 M_{\odot}$)
- D ~ 40 Mpc
- Lowest luminosity AGN ($L_{5100} < 10^{40} \text{ erg/s}$)
 - $M_{BH} \sim 10^4 5X10^5 M_{\odot}$ (Filippenko+03, Peterson+05, Edri+12, den Brok+15)

Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona

Reverberation-mapping campaign in 2017 & 2018

Hojin Cho (SNU), Collaboration with UMichigan, KASI, + many

- Ha lag is expected to be **1-4 hours** (based on L_{Ha} &previous estimates)
- **5-10 min. time cadence** & > ~1 night base-line required
- Large aperture telescope is needed for spectroscopy monitoring
- <u>Spectroscopy monitoring with Gemini GMOS:</u>
 - 2 consecutive nights in 2017 and 2 consecutive nights in 2018
- <u>Photometry monitoring:</u>
 - V-band imaging with 1m-class telescopes
 - narrow $H\alpha$ band imaging with 2-m class telescopes

NGC 4395 – Gemini GMOS spectroscopy

- Gemini spectroscopy monitoring in 2017 & 2018 failed due to storm
- ~3 hour observing provides high quality spectrum and velocity of H α
- broad H α line $\sigma_{H\alpha}$ = 426 km/s (FWHM = ~1000 km/s)

Photometry campaign

- V-band monitoring with multiple 1-m telescopes (continuum)
- Narrow H α -band monitoring with 2-m telescopes (H α line)

Photometry campaign

- Best light curves from May-02-2017 and Apr-08-2018
- Continuum flux in the $H\alpha$ band decreases the time lag.
- Need to correct for the continuum contribution
- On average, **18.3% is continuum** in the H α band.

Continuum correction for $H\alpha$ line LC

- On average, 18.3% is continuum in the Hα band imaging.
 (based on the spectral decomposition with GMOS mean spectrum)
- Continuum variability is assumed to be 0, 50, 100% of that in the V-band.
- Subtract continuum flux from each epoch

The light travel time to $H\alpha$ line region is ~83 min.

- After correcting for the continuum contribution (100% of V-band var.)
- Time lag measured between V- and Hα-band light curves.

- H α lag ~ **83±14 min.** (~10 AU)
- The shortest light-echo with H

Smallest reverberation-based BH mass!

$$M_{BH} = f R_{BLR} \sigma^2 / G$$

- $\sigma_{H\alpha} = 426 \text{ km/s}$
- $R_{BLR} = 83 \pm 14$ minute
- $M_{BH} = 9.1^{+1.5}_{-1.6} \times 10^3 M_{\odot} (f = 4.47)$

From heavy seed?

- Mass is similar to the heavy seed ($10^3 10^4 M_{\odot}$ e.g., Wise+ 2019)
- Relic of a primordial black hole?
 <u>From light seed?</u>
- How easy for a 100 M_{\odot} BH to grow by a factor of 100?

Comparison with previous studies

- Dynamical mass reported as $4^{+8}_{-3} \times 10^5 M_{\odot}$ (den Brok+15)
 - Based on ~1pc resolution (required resolution is 0.1 pc)
 - Mass modeling is complicated (AGN continuum +NSC + OIII)
 - > an upper limit? due to contamination by nuclear star cluster
- Continuum-subtracted OIII image shows biconical, but asymmetric, outflow
- The axis of the [OIII] outflow is inclined relative to our line of sight.

Woo + 19, NA

Comparison with previous studies

- CIV reverberation mass $3.6 \pm 1.1 \times 10^5 M_{\odot}$ (Peterson+05)
 - > Time lag ~ 48^{+24}_{-19} min. & 66^{+24}_{-29} min
 - > CIV velocity $\sigma = \sim 3000 \text{ km/s}$ measured from rms spectra
 - With CIV FWHM from mean spectrum, mass becomes ~2 ×10⁴ M_☉, consistent with our measurement
 - > Difference in rms and mean spectra, low S/N in rms spectrum, etc

Peterson + 05

Intermediate-mass black hole follows M-sigma relation

- NGC 4395, a dwarf galaxy hosts an IMBH.
- $M_{BH} = 9.1^{+1.5}_{-1.6} \times 10^3 M_{\odot} (f = 4.47)$
- $\sigma_* \sim \sigma_{SII} = 18 \pm 1 \text{ km/s}$ (stellar lines undetected)
- $\sigma_* < 30$ km/s (Filippenko+03)

 AGN feedback/self-regulation not required?

Size (R_{BLR}) – luminosity relation

- $H\alpha R_{BLR} = 83 \pm 14 \text{ min.}$
- Log $L_{5100} = 39.8$ (erg/s), after subtracting NSC (4X10³⁹ erg/s, den Brok+15)

- Uncertain slope?
- large scatter
- How reliable indirect BH mass estimates are ?

Cho +19 in prep.

- We report a ~10,000 M_{\odot} BH in NGC 4395 based on the reverberation mapping study. This is the smallest reverberation mass, and a clear case for an IMBH.
- Reverberation mapping can be an effective method for searching for IMBHs, particularly when spatial resolution is not enough to probe the influence of BH's gravity.
- NGC 4395 follows the M-sigma relation of supermassive BHs, suggesting that AGN feedback is not required for the correlation, at least at this mass scale.