State Transition in Supermassive Black Hole Accretion Explaining Changing-Look AGN

> 2019 August 6 Osaka University, Japan Hirofumi Noda

0. Outline

- 1. Introduction: State transition of BH accretion flows
- 2. State transition in SMBH accretion
- 3. Remaining issues and forthcoming X-ray mission

1. Introduction

~State transition of BH accretion flows~

1. X-ray Spectrum of BH Binary

- ☆ X-ray spectrum includes disc black body and inverse Compton which has high *E* cutoff at several hundreds keV (e.g., Yamada, +, Noda et al. 2013)
- ☆ With mass accretion rate, spectral state changes. Disc evaporates into corona, or corona condenses to disc, changing inner radius (e.g., Done et al. 2007)

1. X-ray Spectrum of BH Binary

- ☆ X-ray spectrum includes disc black body and inverse Compton which has high *E* cutoff at several hundreds keV (e.g., Yamada, +, Noda et al. 2013)
- ☆ With mass accretion rate, spectral state changes. Disc evaporates into corona, or corona condenses to disc, changing inner radius (e.g., Done et al. 2007)

2. State Transition in BHB Accretion

Transition happens during X-ray outburst in which L changes by an order of mag. The High/Soft to Low/Hard transition happens at $L/L_{Edd} \sim a$ few %

 \cancel{T} T.scale of the transition is days to weeks (Viscous t.scale of disc at hundreds R_s)

3. How About SMBH Accretion?

☆ State transition in SMBH accretion has been expected to take ~ 10^{5-7} years ☆ Is it impossible to observe state transition in SMBH accretion? → Today's focus

4. Comparison of SED b/w AGN and BHB

☆ Type 1 AGN SED includes disc b.body, hard X-ray Compton and soft excess ☆ Soft excess is thermal Compton by optically-thick corona ($kT_e \sim 0.1$ keV, $\tau \sim 15$) (e.g., Noda et al. 2011; Petrucci et al. 2018; Kunota & Done 2018) Quasars in Crisis

2. State Transition in SMBH Accretion

5. Changing-Look AGN

☆ Some AGNs change their types defined by broad emission lines in ~10 years (type 1 → 1.9 or 1.9 → 1) → "Changing-Look AGNs (CLAGNs)"

 \bigstar In this study, we focused CLAGN spectral shape change in optical, UV, and X-ray

☆ Following type change of Mrk 1018 type 1 (2008) to 1.9 (2016), XMM-Newton and Swift observed multiple times → We modeled multi-wavelength spectra

6. Optical/UV/X-ray Spectral Change (Noda & Done 2018) Swift/UVOT & XRT de-absorbed spectra 2013 Type 1-1.9 $(L/L_{\rm Edd} \sim 0.01)$ 0.01 (Photons cm⁻² s⁻¹ keV⁻¹) **S**0 galaxy 0-3 14.5 15.0 If 15.5 16.0 16.5 16.5 17.0 17.0 17.5 18.0 MUSE r band w band MIR band WISE W1[+2.8mag] WISE W2[+2.8mag] Stripe82 Stripe82 SWIFT 0-3 0.01 0.1 100 10 1000 18.5 1 Liverpool 🕴 Liverpool Energy (keV) 19.0 2015 2013 2011 Observing time

6. Optical/UV/X-ray Spectral Change (Noda & Done 2018)

Swift/UVOT & XRT de-absorbed spectra

7. DiscBB + Soft excess + Hard Compton Model (Noda & Done 2018)

XMM-Newton/OM & EPIC-PN de-absorbed spectra

7. DiscBB + Soft excess + Hard Compton Model (Noda & Done 2018)

Swift/UVOT & XRT de-absorbed spectra

7. DiscBB + Soft excess + Hard Compton Model (Noda & Done 2018)

 \Leftrightarrow SED change of CLAGN closely resembles that of BHB state transition

→ State transition in SMBH accretion !

Not only disc but also soft excess region evaporate into corona

☆ Soft excess emission which contains most of UV photons powering BLR drastically changes its flux in the state transition

→ The state transition causes changing-look phenomenon

The Warm corona producing soft excess possibly evaporates into ADAF \Rightarrow If CLAGNs are due to the state transition, we can predict followings

- $L/L_{\rm Edd}$ values of CLAGNs are distributed around ~ a few %
- Sources crossing $L/L_{Edd} \sim$ a few % show changing-look phenomena (Noda & Done 2018 predicted NGC 3516 and NGC 3227 as examples)

10. Verification of Our Predictions

 $rightarrow L/L_{Edd}$ Values of CL(S)AGNs are actually distributed around a few %

☆ Objects crossing L/L_{Edd} ~ a few % show CL phenomena (Noda & Done 2018 predicted NGC 3227 and NGC 3516)

Very likely, state transition ! (see also Ruan's talk)

Long-term optical spectral monitoring of a changing-look active galactic nucleus NGC 3516 – I. Continuum and broad-line flux variability

A. I. Shapovalova,¹[†] L. Č. Popović,^{2,3} V. L. Afanasiev,¹ D. Ilić,^{4*} A. Kovačević,⁴ A.

- N. Burenkov,¹ V. H. Chavushyan,⁵ S. Marčeta-Mandić⁹,⁴ O. Spiridonova,¹ J.
- R. Valdes,⁵ N. G. Bochkarev,⁶ V. Patiño-Álvarez,^{5,7} L. Carrasco⁵ and V. E. Zhdanova¹

3. Remaining Issues and Forthcoming X-ray Mission

11. L/L_{Edd} Variation Timescale

 $\precsim L/L_{\rm Edd}$ varies by an order of mag. in ~10 years (too short for disc viscous t.scale $t_{\rm vis}$) With $M_{\rm BH} \sim 10^8 M_{\odot} t_{\rm vis} = (1/\alpha \Omega)(R/H)^2 \sim 10^{5-7}$ years at hundreds $R_{\rm s}$

Although inhomogeneous disc or X-ray disc irradiation can explain t.scale, the amplitude cannot be explained. \rightarrow More detailed disc model is necessary

• Magnetic pressure ? (e.g., Dexter & Begelman 2018)

- Front propagation ? (e.g., Noda & Done 2018; Ross et al. 2018)
- Thermal timescale? (Czerny's talk)

12. Does AGN Structure Change?

Following changing-look phenomena,

- ☆ Do BLR clouds appear/disappear? (e.g., Czerny & Hryniewics 2011)
- ☆ Does dusty torus geometry change? (e.g., Kokubo & Minezaki 2019)
- $\stackrel{\wedge}{\bowtie}$ Are disk winds proceeded/regulated? (e.g., Parker et al. 2018)
- Promising probe is X-ray high-energy resolution spectroscopy around 6–7 keV **X-ray microcalorimeter has** $\Delta E/E = 5 \text{ eV}/6 \text{ keV}$ (CCD: $\Delta E/E = 150 \text{ eV}/6 \text{ keV}$)

- *Hitomi* was launched in 2016 (unfortunately, lost)
- *XRISM* will be launched in 2022 by JAXA, NASA ESA, and Universities

13. First X-ray Microcalorimeter Results on AGN

 \approx In 2016, we launched the X-ray calorimeter satellite *Hitomi*, and observed NGC 1275 with $\Delta E/E = 5 \text{ eV}/6 \text{ keV}$ (unfortunately, *Hitomi* was lost after the observation)

 $rac{10^{-4}}{
m K}$ Hitomi revealed $L/L_{\rm Edd} \sim 10^{-4}$, Fe-Ka v.width 500–1600 km/s, and eq.width ~ 20 eV

 \leftrightarrow Normal Seyferts have $L/L_{\rm Edd} \sim 10^{-1-2}$, v.width ~ 2500 km/s, and eq.width ~ 150 eV

 \Rightarrow Fe-K α from CND \rightarrow BLR is absent & low-cov. frac. torus (constraint to AGN structure)

14. Forthcoming X-ray Satellite XRISM (2022)

			(c) Makoto Tashir
Instrument	FOV/pix	ΔE (FWHM @6 keV)	Energy band
Resolve (XMA + X-ray microcalorimeter)	2.9′ □ / 6 x 6 pix	7 eV (goal 5 eV)	0.3 – 12 keV
<mark>Xtend</mark> (XMA + X-ray CCD)	38′ □/ 1280 x 1280 pix	< 250 eV at EOL (< 200 eV at BOL)	0.4 – 13 keV
FOV'	Soft X-ray eff. area		

For the launch in 2022, we are trying our best !

andra

Spatial resolution

Quasars in Crisis

XARM

Hard X-ray eff. area

15. Summary

- Scaling with the BH mass, the state transition of SMBH accretion has been considered to take 10⁵⁻⁷ years.
- We modeled the optical/UV/X-ray spectra of Mrk 1018 following its changing-look phenomenon, and found the spectral shape change is similar to that in the BHB state transition.
- Changing-look AGNs are likely to be explained by state transition. However, timescale and amplitude of their L/L_{Edd} changes are still hard to be understood.
- It is also under debate if AGN structures, BLR, torus, and winds, change following changing-look phenomena. X-ray high-energy spectroscopy by *XRISM* X-ray microcalorimeter is key.

Thank you very much for your attentions!